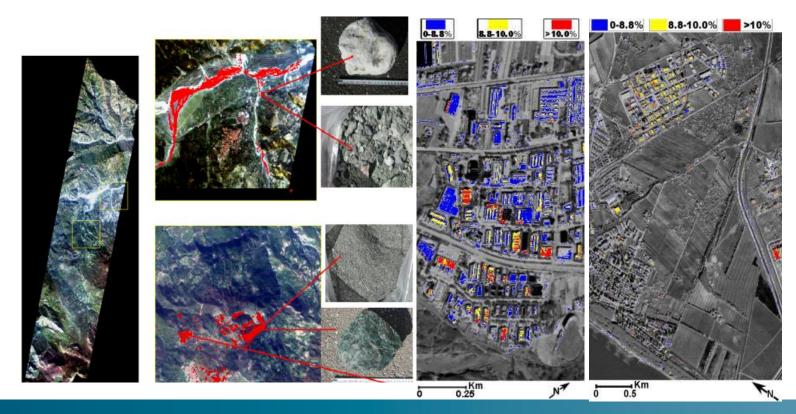


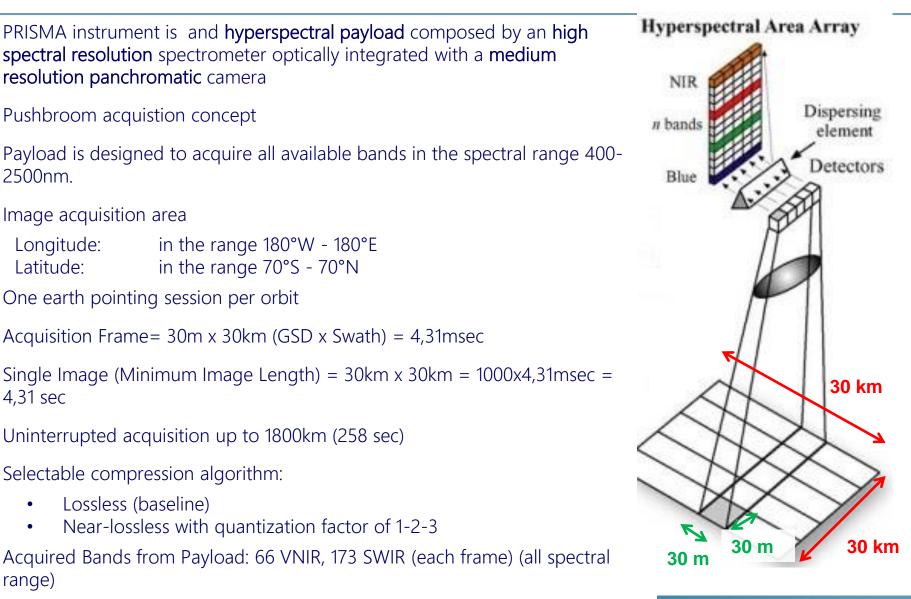
SPACE SYSTEMS

Performance and Functional Aspects of PRISMA payload for the PRISMA Space Mission

Data Exploitation della missione PRISMA, precursore delle missioni iperspettrali nazionali Agenzia Spaziale Italiana (ASI) Roma, 1-2 e 3 marzo 2017

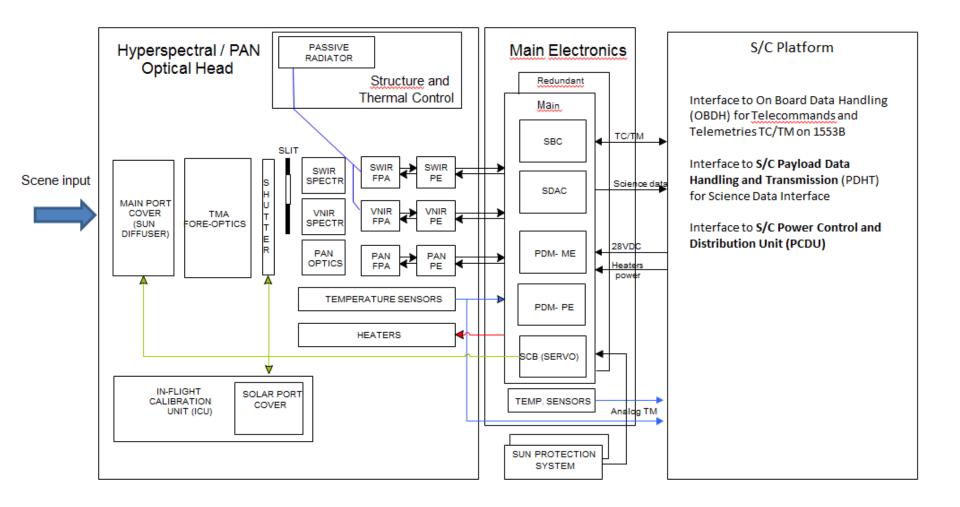

PRISMA Hyperspectral Imager KEONARDO

PRISMA Payload is an electro-optical instrument composed by an Imaging Spectrometer (or Hyperspectral Imager), able to take images in a continuum of spectral bands ranging from 400 to 2500 nm, and a medium resolution Panchromatic Camera. Main applications are:


- Mapping of land cover and agricultural landscapes
- Pollution monitoring
- Quality of inland waters

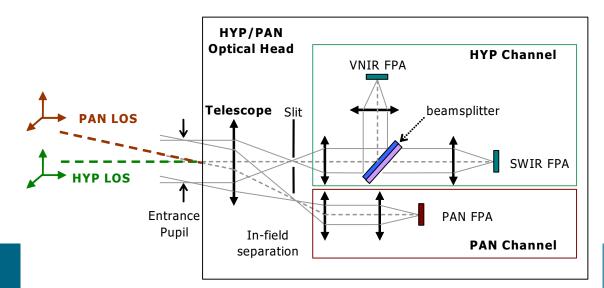
- Coastal zones and sea
- Soil moisture
- Carbon cycle monitoring

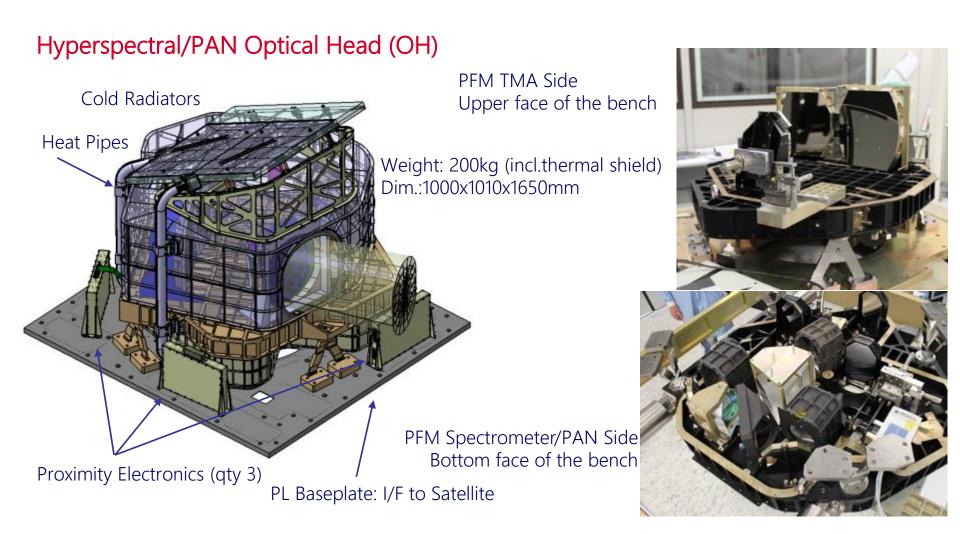
Payload Introduction


Swath / FOV /IFOV	30 km / 2.77° / 48 µrad
Ground Sampling Distance (GSD)	Hyperspectral: 30 m / PAN: 5 m
Spectral Range	VNIR: 400 – 1010 nm (66 spectral bands) SWIR: 920 – 2505 nm (173 spectral bands) PAN : 400 – 700 nm
Spectral Width (FWHM)	≤ 12 nm
Radiometric Quantization	12 bits
VNIR SNR	> 200:1
SWIR SNR	> 100:1
PAN SNR	> 240:1
Absolute Radiometric Accuracy	5%
MTF@ Nyquist freq.	VNIR/SWIR along track > 0.18 VNIR/SWIR across track > 0.34 PAN along track > 0.10 /PAN across track >0.20
Co-registration (Keystone, Smile)	≤ 0.1 pixel
Thermal Control System	Double stage passive radiator (1 for each channel) + stabilization heater
Mass	Optical Head: 175kg Thermal Shield: 25kg Main Electronics: 11kg
Power Consumption	Earth Observation /calibration: 90W Idle: 80W

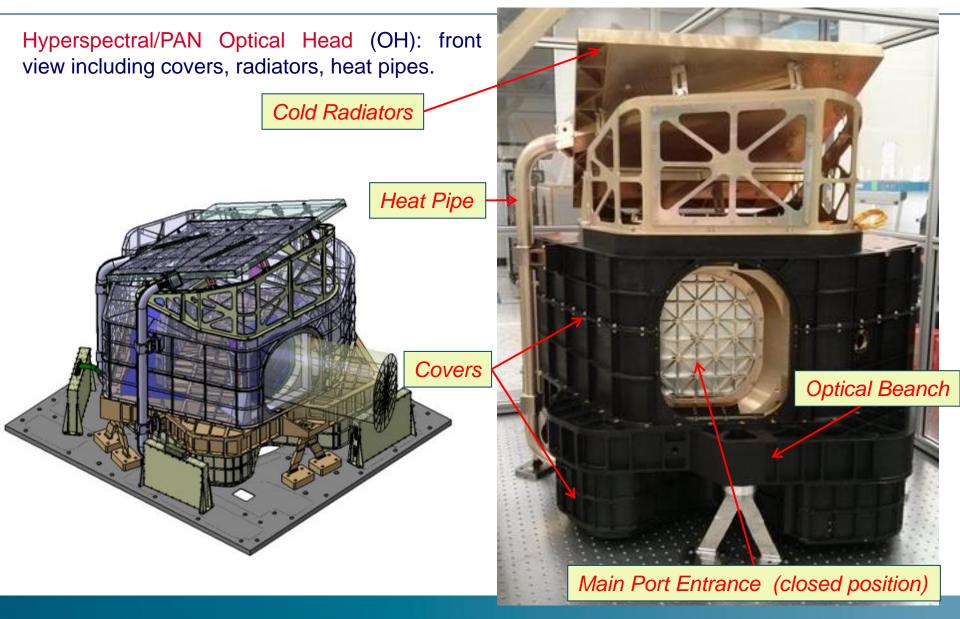
- The Hyperspectral/PAN Optical Head (OH) collects the radiation by a telescope, disperses the radiation by the two spectrometers, separates PAN channel using in-field separation technique, converts photons to electrons by means of state-of-the-art detectors and provides in-flight calibration capability. It has mechanical and thermal interfaces with the S/C.
- The Main Electronics (ME) box has the function to control the instrument and to handle, according to the agreed protocols, the bit stream representing the spectral images up to the interface with the S/C Electronics. It has mechanical, thermal and electrical interfaces with the S/C.
- The Sun Protection System (SPS) is an autonomous system, directly interconnected with PL ME and that is meant to activate a recovery action in case of failure of AOCS in order to prevent damages to the Payload Optical Head in case of direct exposition to the solar flux.

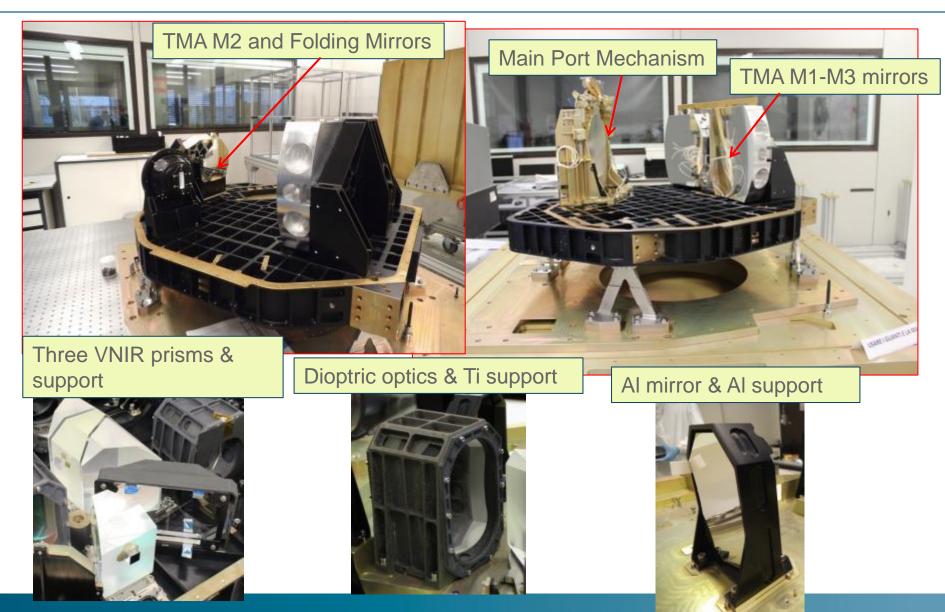
PRISMA p/I Block Diagram




PRISMA light path

- Three mirror anastigmat (TMA) telescope: common to HYP and PAN channels
- In-field separation between HYP and PAN channel: 0.27° so that PAN has <1sec time delay wrt to HYP.
- Single slit for pushbroom HYP spectrometer.
- Beamsplitter for VNIR/SWIR channels separation.
- Prism based solution for spectral dispersion of VNIR-SWIR channels.
- Panchromatic channel.
- Internal Calibration Unit optical relay, with high reflectance integrating sphere and parabolic mirror to image sunlight and spectral lamps.

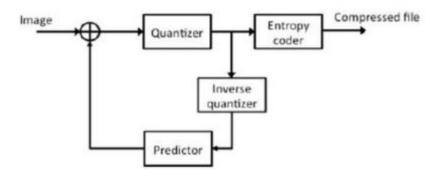


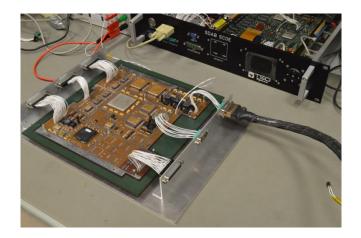

Payload Overview

Payload Overview

Payload Main Electronic

- SDAC (Scientific Data Acquisition & Compression)

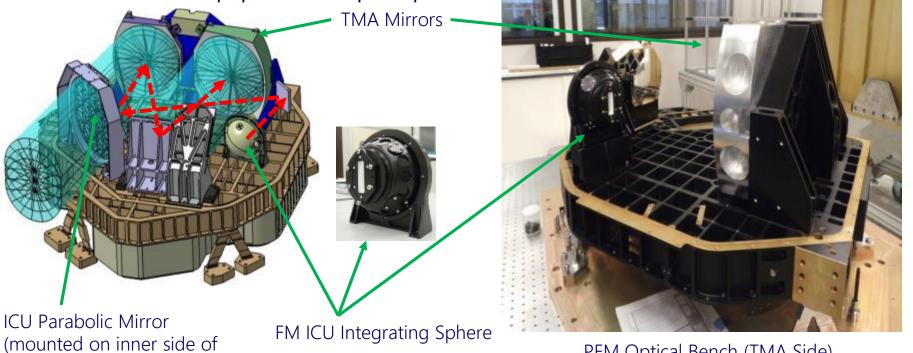

 scientific data I/O, compression, encoding, formatting and selection
- **SBC** (Single Board Computer) CPU, TC/TM interfaces, Serial interfaces for instrument control
- SRV (Servo mechanisms board) Electromechanics parts, heaters, housekeeping
- **PDM-PE** (Power Distribution Module for Proximity Electronics) Feeding of SWIR, VNIR and PAN channel
- **PDM-ME** (Power Distribution Module for Main Electronics) Main and redundant parts feeding
- MB (Main board) ME boards interconnection
- Main Electronic is in cold redundancy configuration
- Main Electronic is interfaced on one side with Platform for Telecommand, Telemetry, Power and Scientific data.
- Main Electronic is interfaced on other side with Proximity electronic (one for each image acquisition channel), mechanisms (shutter, main port, solar port) and payload thermal control (on VNIR and SWIR detectors and optical bench)



Compression algorithm


- A compression algorithm for scientific data is implemented to match the mission daily data volume requirements, taking into account the downlink capacity.
- The algorithm is an extension of the recently published CCSD123 recommendation intended for multispectral and hypespectral images.
- It includes a spatial/spectral predictor, a quantiser and a Golomb entropy coding stage.
- Lossless compression is the baseline, but a near-lossless mode for advanced compression is also available in case more enhanced performances are needed.
- Architectural drivers: low complexity, low resources needed, high throughput.
- Hardware implementation through the use of components specifically designed for processintensive Space System. High grade of parallelism to maximise efficiency.
- Implemented on the SDAC board (inside PL Main Electronics)

SWIR	VNIR	PAN
> MCT hybrid ($\lambda_{\rm C} \sim 2.5 \ \mu m$)	> MCT hybrid with substrate removed ($\lambda_{\rm C} \sim 2.5 \ \mu m$)	≻ CCD
➢ Spectral range: 1- 2.5 µm	➢ Spectral range: 0.4 − 2.5 µm	
➤ 1000 x 256 pixels	➤ 1000 x 256 pixels	12000 pixels (used 6000 pixels)
> 30 µm pitch	> 30 µm pitch	≻ 6.5 µm pitch
≻ 8 outputs	≻ 8 outputs	➤ 4 outputs
➢ QE > 85%	$\geq QE > 68\%$	Responsivity: >3.8 V/μJ/cm ²
≻ 185K-195K	≻ 185-195K	> At the optical bench temperature



Payload Internal Calibration Unite LEONARDO

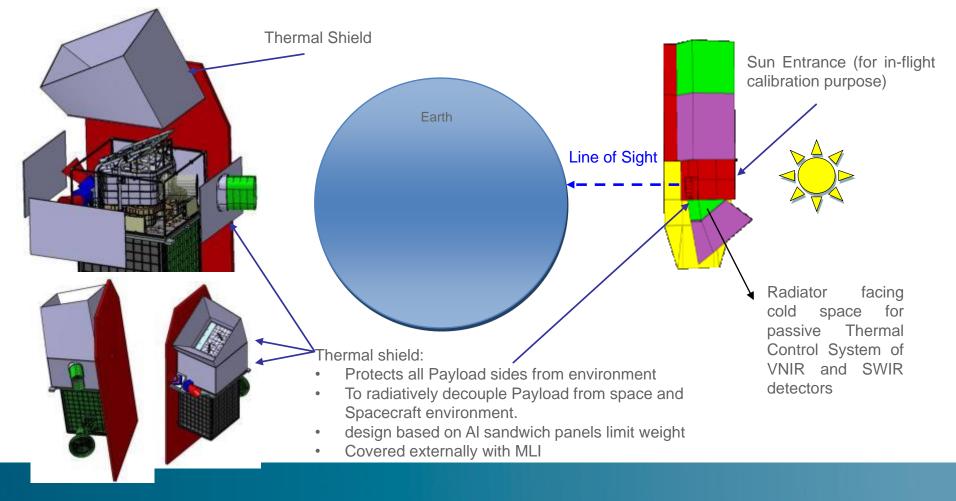
The Internal Calibration Unit (ICU) goal is to maintain PRISMA calibration accuracies throughout the instrument operational lifetime, by quantifying calibration uncertainty and updating KDP set. The task of internal calibration sources (Lamps and Led) is to perform relative radiometric and spectral calibration.

The task of external natural source (Sun spectral radiance), observed through a dedicated solar port, is to perform absolute radiometric calibration.

Entire instrument pupil and full optical path is illuminated by Internal Calibration Unit (ICU).

Main Port Mechanism)

PFM Optical Bench (TMA Side)



PAYLOAD BACKP SLIDES

Spacecraft Attitude

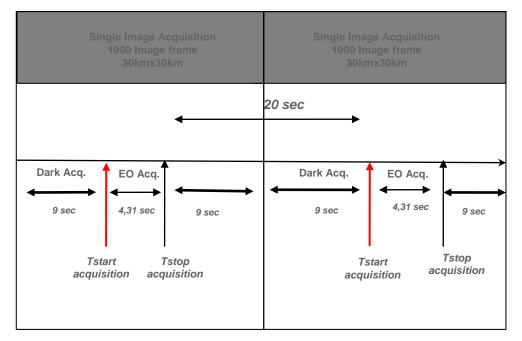
- Spacecraft is always in Sun Pointing attitude to recharge batteries. Payload performs calibration activities during this phase
- Spacecraft moves to Earth Pointing attitude to perform earth observation tasks: Payload works to acquire HYP and PAN images

- Payload uninterrupted single acquisition = 1800 km along track (258 sec of continuous acquisition)
- Payload daily image acquisition capability: 200.000km2 daily
- Payload is very flexible infact it is possible to :
 - Select Spectral band to be acquired
 - Apply spatial grouping strategy (2 or 4 spatial sampling are summed: increase GSD)
 - Apply spectral binning strategy (2 adjacent bands are summed: increase in SNR)
 - Select compression algorithm:
 - Lossless (baseline)
 - Near-lossless with quantization factor of 1-2-3
- Acquired Bands from Payload: 66 VNIR, 173 SWIR (each frame) (all spectral range)
- Payload is designed to acquire all available bands in the spectral range 400-2500nm.

Payload Calibration: Summary

Туре	PL Mode	Telecommand	Sequence ID	Prodotto	Note	S/C attitude	S/C Constraint	Off-Nadir [deg]	Settable Parameter	Frequenz a	Durata
Dark-OBS		inclusa in EO acquisition		Dark_Calibration_file (DC)	Main port open, shutter close	Fine Pointing	No	-21/+21		inclusa in EO acquisition	9 sec
EO acquisition special		TC_Acquisition	Acq Purpose=1	Earth_Observation_C alVal_file (EOS)		Fine Pointing	No	No	SP_T_INT_ OBSERVAT ION	1 mese	a richiesta
Dark-INT		TC_Dark_Acquisitio		Dark_Calibration_file (DC)	Main port and shutter close	Sun pointing	No	-21/+21	SP_T_INT_ DARK_CAL	a richiesta	8 sec
Internal not special		TC_Calibration	1	Internal_Calibration_f	iBKG,DARK, LED, LAMP	Sun pointing	No	-21/+21	SP_T_INT_ INTERN_C AL_14	7 giorni	4 min 30 sec
Internal special	CAL	TC_Calibration	2	Internal_Calibration_ Special_file (S_IC)		Sun pointing	No	-21/+21	SP_T_INT_ CAL_SPEC _120	1 mese	20 min
Sun	CAL	TC_Calibration	3	Sun_Calibration_file (SC)	SUN	Sun pointing	Sun normal to solar port con ±5 deg	No	SP_T_INT_ SUN_CAL_ 120	1 mese	8 min 30 sec
Moon	CAL	TC_Calibration	4	Moon_Calibration_file (MC)	MOON	Moon pointing	sono necessari più orbite per coprire la superficie lunare	No	SP_T_INT_ MOON_CA L	1 mese	40 sec
Flat Field SWIR	CAL	TC_Calibration	5 + EXT_FF_CAL _TYPE 0	Flat_Field_Special_fil e (FC)	FLAT FIELD SWIR	Flat Field pointing	Yaw 90° rotate	No	SP_T_INT_ EXFF_CAL	3 mesi	35 sec
Flat Field VNIR	CAL	TC_Calibration	5 + EXT_FF_CAL _TYPE 1	Flat_Field_Special_fil e (FC)	FLAT FIELD VNIR	Flat Field pointing	Yaw 90° rotate	No	SP_T_INT_ EXFF_CAL	3 mesi	35 sec
Flat Field PAN	CAL	TC_Calibration	5 + EXT_FF_CAL _TYPE 1	Flat_Field_Special_fil e (FC)		Flat Field pointing	Yaw 90° rotate	No	SP_T_INT_ EXFF_CAL	3 mesi	35 sec
Autotest	CAL	TC_Calibration	6	Autotest_file (AU) da chiarire se aggiungerlo	solo check elettrico	All	No	-21/+21	SP_T_INT_ AUTOTEST	a richiesta	3 sec

Timeline for Calibration here reported are detailed in PRS-MA-GAF-001 Payload_User_Manual



Earth Observation

This is the baseline configuration for Payload timeline but it can be modified according to mission/planning requirement:

•The number of dark frames to be performed before and after each acquisition is a parameter ;

• The dark acquisition can be disable in each single TC_Acquisition;

Sub- Acquisition	Main Door Cover	Sun Door Cover	Shutter	Lamp	Led
EO	Open	Closed	Open	Off	Off

Dark- OBS

Dark observation included in the EO acquisition timeline.

In the timeline a previous dark observation is included, a successive dark observation is optional.

It can be enable/disable by parameters included in the TC_Acquisition

Dark observation acquires 20 frames (baseline) but this number can be modified (it is PL Settable parameter)

It is performed by closing PL shutter.

S/C is already in Fine Pointing attitude due to planned EO acquisition.

Sub-	Main	Sun	Shutter	Lamp	Led
Acquisition	Door	Door			
	Cover	Cover			
DARK-OBS	Open	Closed	Closed	Off	Off

EO Acquisition Special

EO Acquisition special is a EO acquisition performed on special target.

It is marked as special because its acquired data are used for calibration purposes.

An Internal Calibration is needed before performing an EO Acquisition Special.

S/C is in Fine Pointing attitude because it is an EO acquisition.

Sub- Acquisition	Main Door Cover	Sun Door Cover	Shutter	Lamp	Led
SURF-OBS	Open	Closed	Open	Off	Off

Dark-INT

It is a standalone dark acquisition in AOI (OBS mode)

Dark observation acquires 20 frames (baseline) but this number can be modified (it is PL Settable parameter)

It is performed by closing PL shutter.

S/C is already in Fine Pointing attitude due to planned Observation mode.

Sub- Acquisition	Main Door Cover	Sun Door Cover	Shutter	Lamp	Led
DARK-INT	Closed	Closed	Closed	Off	Off

Internal NOT SPECIAL

It's a calibration performed in calibration mode by acquiring light from internal source (lamp and led mounted on the ICU)

It is a sequence of dark, background, lamp and led acquisitions.

Number of acquired frames is a PL Settable parameter.

Sub- Acquisition	Main Door Cover	Sun Door Cover	Shutter	Lamp	Led
DARK-INT	Closed	Closed	Closed	Off	Off
Sub- Acquisition	Main Door Cover	Sun Door Cover	Shutter	Lamp	Led

Sub- Acquisition	Main Door Cover	Sun Door Cover	Shutter	Lamp	Led
LAMP	closed	Closed	Open	On	Off
Sub- Acquisition	Main Door Cover	Sun Door Cover	Shutter	Lamp	Led
LED	closed	Closed	Open	Off	On

Internal SPECIAL

It is a calibration performed in calibration mode by acquiring light from internal source (lamp and led mounted on the ICU)

It is a sequence of dark, background, lamp and led acquisition.

Number of acquired frames is a PL Settable parameter.

The difference between internal NOT SPECIAL and Internal SPECIAL is the number of acquisition/frame carried out and the integration time: these are settable parameter => internal SPECIAL acquires more calibration data.

With the Internal Special it shall be possible to perform detectors linearity (vs integration time).

SUN

It's a calibration performed in calibration mode by acquiring light from Sun (passing through the ICU)

Number of acquired frames is a PL Settable parameter

S/C is in Sun pointing attitude with a latitude lower than -60 degrees

Sub- Acquisition		Sun Door Cover	Shutter	Lamp	Led
SUN OBS	Closed	Open	Open	Off	Off

MOON

It is a calibration performed in calibration mode by acquiring light from Moon (passing through the Main Port)

Number of acquired frames is a PL Settable parameter.

S/C is requested to point Moon with the Main Port.

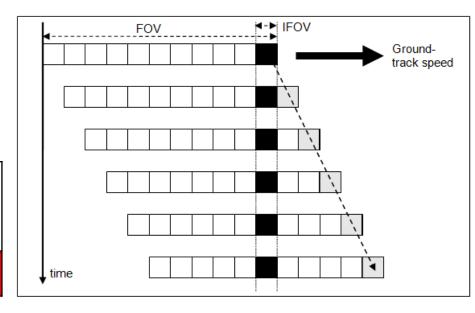
The Moon does not cover the entire instrument Field of View (~1/5 only).

More orbits are needed to cover entire slit length (FOV) (optional acquisition)

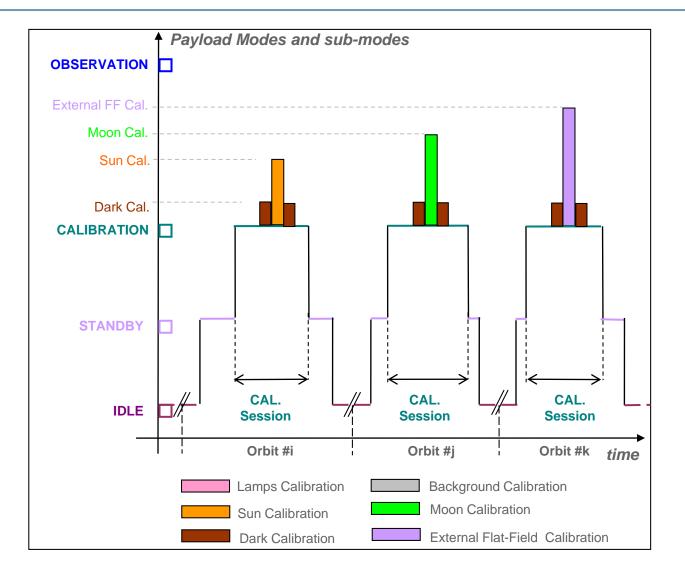
Sub- Acquisition	Main Door Cover	Sun Door Cover	Shutter	Lamp	Led
MOON OBS	Open	Closed	Open	Off	Off

FLAT FIELD

It is a calibration performed in calibration mode by acquiring light from Flat Field target from Main Port.


It is performed independently for VNIR, SWIR and PAN detector.

Number of acquired frames is a PL Settable parameter


S/C is requested to point Flat Field target by rotating S/C (yaw +90deg)

A target 2,9kmx2,9km area is needed, in order to take into account pointing error and alignment.

Sub- Acquisiti on	Door	Sun Door Cove r	Shutte r	Lamp	Led
SURF-	Open	Close	Open	Off	Off
OBS-FF		d			

